AD-A035 778

UNCLASSIFIED

TRW INC REDONDO BEACH CALIF

FORTRAN CODE AUDITOR.
DEC 76 P SMITH

VOLUME I.

F/6 9/2
USER'S MANUAL. (U)
F30602=76=C=0187
RADC=TR=76=395=VOL~1 NL

SECURITY IFICATION OF THIS PAGE 'When Date Entered)

EPORT DOCUMENTATION PAGE PR e g g S

2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

- 4. TITLE (and Subtitle) ol e ?
é ronrmcom-:wnnox. %lum I.\

Uset s Hanual.

Final Zechnical Kepsate
May M75 - Januamp ¥76

PENSRBS o

N/A

‘ P RANT BUMBER(S) 4
; /0 ’ PaulZSnith l (/0/ F36682-76-C-#187 [¢ <
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::22"a‘:o'u‘x"ﬁﬁ."r"..’u'l.°-‘¢‘§f‘ TASK :
TRW Zne. ,, /é -
One Space Fark | 15 2 g ss8lle0y S 2 VooE

Redondo Beach CA 90278 i
11. CONTROLLING OFFICE NAME AND ADDRESS L
Rome Air Development Center (ISIS) Decawx ¥76 7

Griffiss AFB NY 13441 T NUM PAGES
56
[73. MONITORING AGENCY NAME & ADORESS(I{ different from Controlling Office) | 15. SECURITY CLASS. (of this report)
Same UNCLASSIFIED 3
—‘—"7_@—‘ T8a. DECLASSIFICATION/ DOWNGRADING 4
SCHEDULE
N/A 1

e e e
16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

Same

18. SUPPLEMENTARY NOTES

RADC Project Engineer: Donald L. Mark (ISIS)

19. KEY WORDS (Continue on reverse eide il y and identity by block mumber)
FORTRAN Coding Standard

Structural Analysis

Conventions Audit

Automatic Test Tool

ABSTRACT (Continue on reverse side If necessary and identity by block number)
The FORTRAN Code Auditor, an automated test tool, is used for the cost effec-
tive enforcement of FORTRAN programming standards and conventions appropriate
to the Air Force software enviromment. It does not modify code. Using pre-
defined coding standards and conventions, it simply advises the user where
these standards and conventions have not been adhered to. The major advantage
of favoring an automated auditor over manual methods, besides cost effective-
ness, is complete objectivity and unambiguity. ._m (over)

=) g

DD 55 1473 £oimion oF 1 Nov 68 is ossoLETE UNCLASéIFIED O 'Z AB

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)

prep—

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

___4[;'ru¢ standards can be vieved as being coding enforcements in four areas:

B ¥

\/'ﬁ‘\ "\/"‘“

lﬁcuncncacion,SEanda:ds -/S%andardu defining quantify and placement of
commentary thus enhancing program readability and conp:chen31Vf;

tbrna:,tﬁandard: -)Sﬁandards identifying phy'icnl placement and grouping
of code elements on the source code listingJ

t‘sign Standards - S@andards limicing module size and placing restrictio
on the use of certain instructions with the end result of providing an nT
optimization of code relative to executicn time, and

Structural ﬁiandard: - x%andn:ds requiring the use of strict rules for
the top~down design and implementation of a system of programs and the

requirement that the components adhere to a hierarchical form as much as
possible.

?

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

i i i G Lo - - R—— -

EVALUATION

"/ The feasibility and value of code auditing to enforce programming
standards have been successfully demonstrated. Most major software develop-
ment projects have some form of programming standards, but rarely are they
enforced, and then not effectively. Such standards generally address four
areas:

* Documentation - the placement, orientation, and amount of comments
in a program

* Format - the placement and grouping of code elements

* Design - the use of language constructs, program structure, and module
size

* Structural - use of top-down design and implementation

b
The purpose of programming standards is to make program modules, coded
by various people, more uniform, readable, and understandable; to make them
easier to debug, test, and maintain; and to restrict the use of coding
practices which experience has shown to be prone to error. Especially, pro-
gramming standards define what is good programming practices.

RADC's Code Auditor, an automatic test tool, will be used for the cost
effective enforcement of FORTRAN programming standards and conventions
appropriate to the Air Force software environment. The single biggest ad-
advantage of favoring an automated auditor over manual methods, besides its
cost effectiveness, is its complete objectiveness and unambiguity.

A S P S

DONALD L. MARK
Project Engineer

"'!lllII!!lﬂlﬂh‘- o —— ——————— e 1‘!

3
g
TABLE OF CONTENTS
i
SECTION PAGE
1.0 GENERAL OESURIPTIEON . . - o i o i vl ol e 45 4 1
1.1 Purpose of the User's Manual 1 ;
1.2 Project Reference . . . v < & & o i, e s R 2 |
2.0 SESTEN SUMMRBY - o e e e e ks e e 3
2.1 System-ADPITCALION o v i 0 e e e e e e e e 3
‘ 2.2 SYS tem UDerat IO «ii iy coie o tlividrso s b abs o Py iinse 3
f 2.3 System Configupation. . .. u aviv: woplmis aissetn s &3 5
% 2.4 System Organization. .« iy« asesishnt kil stolhE enete 5
? 2.9 PEPTORMENCE. . o/ kuiotis s futibes o Gadtrs ot Rk » DR Rur 8
2.5.1 I s e S e e s T s 8
1 2.5.2 (3 [78 o (o] 1 174 1 PRl s s i, i S B G e R 8
? 2:9.3 PROCESSTHG TaMe " e & s sl e e e 8
ﬁ 2.5.4 OEREY LIMICS 000 0c 5 0 e e e et ol s B 8
2 3.0 GENERAL DESCRIPTION OF INPUTS, PROCESSING ;
AUBEOUIRIRNS. . 5 o aiatdin, s v wlhd v %l vt (208N 10
3.1 TAPBES - slosno " rn i e iy s e G i e 10
3.1.1 User's Source Input i & % iale v wie e et s 10 i
812 O SR L e i 10 |
e s Code Auditor QURPULS . + - v o v 5w ¥ ow o ow w e 13
3.2.1 Initialization Output (Coding Standards Audit) . . 13
2.2 Module Audit Output (Coding Standards Audit) . . . 13

-{i-

SECTION

3.2.3 Module Summary Output (Coding Standards Audit) . . .
3.2.4 Program Summary Output (Coding Standards Audit)

3.2.5 Module Segmentation Output (Program Structural

T T S St T A e (R R
3.2.6 Segment Transfer Table Output (Program
Structura) Aalysis) ¢ oo LT s Ve e s
3.2.7 Module Summary Output (Program Structural
BEBIEIE] o v o b e e ey e e e e e,
B2 R L ERTOr e SSAGRS L o s S e R e L PR A B L
3.3 Operating Procedures .« . . o« 's s s s s o v & w2 w
3.3.] Source Input via Cards ¢ o « o o ¢ o . .
332 Source Input From Disk . v civ v e e e e w
3.3.3 Sotrce Input Erom Tape o . « & .. .o ois .
APPENDIX A RADC FORTRAN Code Auditor Coding
SEANAARAS /oh v el o R e e e e
APPENDIX B Structured Program Requirements
B-1 Program Seamentation
B-2 Segment Transfer Table « . . .
B=3 Structural Analysis . . . « » v v o s ¢ e o

-iii-

PAGE

15
18

20
21

24
27
30
31
34
35

36
40

40
43
44

rwwm—ﬂw

1.0 GENERAL DESCRIPTION

1

.

Purpose of the User's Manual

The purpose of this User's Manual is to describe the use and

operation of the RADC FORTRAN Code Auditor. The Code Auditor,

an automated test tool, is used for the cost effective enforce-

ment of FORTRAN programming standards and conventions appropriate

to the Air Force software environment. It does not modify code.

Using pre-defined coding standards and conventions, it simply

advises the user where these standards and conventions have not

been adhered to. The single biggest advantage favoring an

automated auditor over manual methods, besides its cost

effectiveness, is its complete objectiveness and unambiguity.

areas:

(1)

(2)

(3)

Documentation Standards - Standards defining quantity
and placement of commentary thus enhancing program

readability and comprehension.

Format Standards - Standards identifying physical
placement and grouping of code elements on the coding

sheet, again enhancing readability and comprehension.

Design Standards - Standards limiting module size and
placing restrictions on the use of certain instructions
with the end result of providing an optimization of

code relative to execution time.

= .

e e A b

i

(4)

Structural Standards - Standards requiring the use of
strict rules for the top-down design and implementation

of a system of programs and the requirement that the

components adhere to a hierarchical form as much as

possible.

1.2 Project Reference

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Control Cards Reference Manual
Order Number BS19

File Management Supervisor
Order Number DB54

Fortran IV
Order Number BN88

GCOS Time-Sharing Terminal/Batch Interface Facility
Order Number BR99

General Comprehensive Operating Supervisor
Order Number BR43

General Loader
Order Number BN90

Guidelines for Software Quality Assurance
TRW Number SPD-3055
Date 9-75

)

IESRETRS &

' B e T .

2.0

ro
.
—

2.2

SYSTEM SUMMARY

System Application

The RADC FORTRAN Code Auditor Program provides project personnel
with an automatic means of auditing their computer programs to
insure that the programming practices contained within their pro-
grams conform to RADC Software Coding Standards and Procedures.
These programming standards are described in Appendix A. The RADC
FORTRAN Code Auditor also monitors the user's source to determine
if the code is structured, i.e., consists of combinations of the
control structures depicted in Appendix B, such that control flows

from top to bottom or from beginning to end.
System Operation

The RADC FORTRAN Code Auditor is initially used by the programmer
during program development and only after successful compilation to
identify those areas within his code which do not adhere to the pre-
defined coding standards and conventions. Utilization of the tool
during the program development stage allows the programmer to con-
currently reduce or eliminate any standards violations prior to

unit testing and quality assurance examinations. The latter activity
also makes use of the Code Auditor in officially sanctioning the pro-
gram's adherence to established coding conventions. Figure 2-1 in
general, depicts the timing of the application of the Code Auditor
during the software development cycle. The Code Auditor has been
designed such that 1its output is clear and unambiguous thus enabling

its use by both technical and management personnel.

NOILVOITVA
W3LSAS

LS b e o _ b Sl g L g

1=2 aunb}4

SNOILVIOIA
SQHVAONVLS

HoLliany 300D

40
NOI1VD11ddV

a
|

ON

SNOILLYIOIA
SOHVANVIS

NOILVYDI 410149

NOILYNINVYX3
3ONVYNSSY
ALNVYND

OMNILSTL
1INN

BOL10NVY
3002 40
NOILVYDITddV

1N3L1d013A3C
3002

Q37vi3a

NOILVII141034S
W31SAS

NOILINId3Q
S1N3W3UIND3IY

by

.3

2.4

System Configuration

The minimum configuration required to support the RADC FORTRAN
Code Auditor shall include:

{1

o
System Organization

The Code Auditor consists of three physical segments (overlays)
which are functionally consistent with the three basic logical
components of the system and their attendant operation. The
operations performed by the Code Auditor's logical parts and their
correlation to the appropriate physical system overlays are: ;

(1) Analyze the user's source code to check for non-adherence

Honeywell Series 600/6000 Information Processing System
under GCOS control

40K words of memory]

DSS180 Disk Storage Subsystem or the equivalent; a
minimum of 1 drive

36 - bit word length

Card Reader - Reads punched 80 column cards (CRZ-201 or
equivalent)

Line Printer - Prints 132 columns per line (PRT 300/PRT
201 or equivalent)

Software - FORTRAN Y Compiler (Honeywell Extended Compiler)

S s

to the established standards and conventions except the
program's structural requirements, reporting any non-confor-
mance monitored. Overlay A performs this function com-

pletely independent of overlays B and C processing.

*

b G St 6 i S

(2)

(3)

Overlay B performs a second pass analysis of the user's
source code, parsing its structure into segments and
relationships among segments, for subsequent processing
by overlay C. The Segment Transfer Table, which des-
cribes this interrelationship among the program's seg-
ments, is written to a temporary disk file and consti-

tutes the single interface between overlays B and C.

Overlay C accepts as input the temporary file created

in overlay B containing the Segment Transfar Table. Via
iterative application of the reduction algorithm dis-
cussed in Appendix B, an analysis is made of the Segment
Transfer Table to establish compliance with the structured
programming rules. This overlay prints the Segment Trans-
fer Table as passed from overlay B, its contents after
iterative reduction (if unstructured), and summarily a
"structured/unstructured" message for each module of the

user's source modules processed.

Figure 2-2 depicts for each logical segment, 1its interface with
other segments, files processed and reports generated. The main
driver (root segment) is interfaced via a labeled common to each of
the three overlays comprising the Code Auditor system. Besides
providing root segment access to Code Auditor files, the labeled
common block passes option card parameters for execution control of

the individual overlays.

b=

MAIN DRIVER
OVERLAY A OVERLAY B | OVERLAY € |
CODING PROGRAM |
STANDARDS ;:gggA:rnon STRUCTURAL
AUDIT MODUN ANALYSIS
MODULE LE MODULE
‘ SEGMENT
OPTION TRANSFER 1
CONTROL TABLE
CARDS (S) L.___——"'--
v y
STANDARD PROGHAM STRUCTURE
AUDIT SEGMENTATION ;}“3;::‘3
REPORT R
REL REPORT

SEGMENT
TRANSFER TABLE
REPORT

ARGUMENT
INPUT ,
PROGRAM :

Figure 2.2. Code Auditor Organization and Interfaces

2.5
2.5.1

a5 2

2.5.3

2.5.4

Performance

Input Limits

The Code Auditor will process user source input from any input
medium; cards, disk or tape. Each source statement must conform
to an 80-column card image record irrespective of the input
medium. The maximum number of input modules (main programs,
function subprograms, statement functions, or subroutines) pro-

cessed by the Code Auditor is 100.

Output Limits

Other than the temporary disk file output from overlay B, there
are no limits to Code Auditor output. The disk-resident Segment
Transfer Table, output by overlay B, is bound by table capacity
internal to overlay B. Translation of table limits to input file
size is not possible since table overflow is dependent upon the

input source's logical structure, rather than the volume of input.

Processing Time

Reasonable estimates of program processing time can be made by

using the base time of approximately .15 seconds of processing

time per input card image processed.

Other Limits

Additional limitations and constraints to source content follow:
(1) FORTRAN syntax errors are not detected by the Code Auditor.

In order for Code Auditor to audit properly, all syntax

(2)

(3)

(4)

(5)

errors detectable by the compiler should be absent from

the input.

A blank character (hollerith blank) is recognized as a
delimiter; therefore, embedded blanks within variable
names, keywords, etc., will cause an incorrect scan of

the elements in the card image.

When the programmer includes an IMPLICIT statement in the
program specifying alphabetic characters as being either
INTEGER or DOUBLE PRECISION variable types, and subsequently
uses a specification statement redefining the implicity
defined variable to something other than DOUBLE PRECISION
or INTEGER variable type, the Code Auditor will not deter-
mine that standard no. 14 for mixed mode arithmetic or
standard no. 22 for 1/0 device referenced as an integer

name has been violated.

When the Code Auditor encounters a comment card imbedded
within continuation cards, data on the remaining continua-
tion cards are not analyzed for adherence to the pre-defined

coding standards.

Variable or array names contained within labeled common and
additionally declared as CHARACTER may cause improper moni-
toring of standard no. 24; common block length must be the

same in all modules.

TR

3.0

2.9

2.3.1

31

GENERAL DESCRIPTION OF INPUTS, PROCESSING AND OUTPUTS

Inputs

The Code Auditor inputs consist of the user's input source

code and one or more option cards.
User's Source Input

The Code Auditor's source input may be input via either of
three mediums; cards, disk or tape. Irrespective of the
input medium, all source statements must be 80-column card-
imaae format. The source code input may constitute any
number of FORTRAN modules, up to 100, delimited in the usual
manner by the FORTRAN END Card.

Option Card Input

The option card provides the user with a method of directing
the Code Auditor to execute optional or alternate functions
of the Code Auditor. It may only be input from the card

reader. The optional functions supported are:

(1) List the entire input source code along with Code
Auditor assioned card sequence numbers and indi-

cators showing non-adherence to coding standards.

(2) Limit the output listing of the input source code
to those card images containing source code where
non-adherence occurs along with assianed card num-

bers and indicators.

=-10-

R

(3)

(4)

(5)

(6)

Suppress auditing for adherence to any one or

more of the coding standards.

Suppress auditing for all of the coding standards,

nos. 1 thru 37.

Suppress auditing for adherence to program

structural requirements.

The input source is realtime code.

These controls are input on the option card. The option

card is identified by the character string "CAOPTION" in card

columns 1 through 8. Other parameters may appear in any se-

quence.

When the Code Auditor encounters no CAOPTION card

at the start of execution, the Code Auditor will provide

default options as follows:

(1)
(2)

(3)

List the entire source input.

Audit for adherence to all non-realtime coding

standards.

Audit for adherence to structural proaramming

requirements.

The parameter character strings which control the options

and their effect on Code Auditor processing are shown in
the 1ist below.

<11~

o

Parameter
Character

String

CAOPTION
LIST

NOLIST

REAL

NOCA

NOSTRUCT

37

Effect on Code Auditor Processing

Directs Code Auditor to search the card
for user controls.

Directs Code Auditor to list the entire
source code input.

Directs Code Auditor to limit the source
code listing. (Note: When Code Auditor
finds neither the parameter LIST nor
NOLIST the default is LIST. When Code
Auditor finds both parameters LIST and
NOLIST the default is NOLIST.)

Directs Code Auditor to refrain from
auditing for adherence to the coding
standard numbers 27 and 28.

Directs Code Auditor to refrain from
auditing for adherence to coding stan-
dard nos. 1 thru 37.

Directs Code Auditor to refrain from
auditing for adherence to structural
coding requirements.

Directs Code Auditor to refrain from
auditing for adherence to coding stan-
dard number 1.

Directs Code Auditor to refrain from
auditing for adherence to coding stan-
dard number 2.

Directs Code Auditor to refrain from
auditing for adherence to coding stan-
dard number 37. (Note: Each of the
numbers from 1 to 37 is a control para-
meter. Each number n input directs Code
Auditor to refrain from auditing for ad-
herence to coding standard number n.)

=12-

The CAOPTION card is identified to Code Auditor by the
string of characters "CAOPTION" in columns 1-8 of the
card. Other parameters may appear in any sequence. The
parameters are delimited by a string of one or more cha-

racters of blanks and/or commas in any sequence.
3.2 Code Auditor Outputs

A11 of Code Auditor's outputs are printed data. Code

Auditor prints during eight distinct phases of its execu-

tion; four phases each for coding standards audit and pro-

PRr e

gram structural analysis respectively. The first four phases
of printed output occur during coding standards audit pro-
cessing. Phases five through eight occur during proaram
structural analysis processing. Code Auditor outputs are

described in sections 3.2.1 through 3.2.7.

3.2 Initialization Output (Coding Standards Audit)

There are two initialization messages. The first message
reflects Code Auditor's interpretation of options selected

by the user. It reports the user's direction to Code Auditor
with respect to the options NOLIST and REAL.

The second message is a 1ist of the standards (see figure 3-1).
b &8 Module Audit Output (Coding Standards Audit)

The data output during the audit of each module are the
1isting of the source code being audited, the Code Auditor

¥ ..

' a3sn 40N s
e 03SN sON l'.al,
03SN JoN !
21810 INWNOMY NY NIYINOD. NYD WIS NuNiIN. n.un:u.nn.
! 243 §702 NI E¥NYIE 108Y3 4SVY
A e »—«Laa-uh»zam;-u:rl_
b 3 242 $703 N1 SuNvIe 100Yd 18yl

ceeu--SOMYI TIV.NO § NWPICD NI 9.0 3

150UYD BNON YO 33uHA JO ISIENOD BININHOI INII*NE €
*SINLS ININWNODISSY 300N G3XIN 30323kd-LSNH SINIWNOI__02

*SANLS O/] 3¥0ON ¥O 3NO 340 $XJ078 30303h¢ ASNW S.N3INNOY I3
2$4NLS IV 340N MO 3INQ. JO.$X¥I018 . 303034d-4SNH. SANINNOS 828

. T5in1g 41 340N BO 3NO $0 §%D078 30323ud 4SNH SIN3WWOI ¥pg

.-:::u!n.._:_.suw::.:;-.-.I:::. -u.l.ll
. 0UvD 4SulJ 6V § 900 NI 108NAS u.:- .2..3 -::.ux-w:.w <

4 -:-:zeubnuoo:-:uxxou uu.suu[r

a3sn Ao
e A s e R s e e T ._wna 40N Ll

"gNYY90 a3y N T " gaw
e goou s 3nl V3, RT1°0 a0y 360 $inid §dave SavOL8DE_ 02

o.»x: LNdLIN0 ¥O TIVO'VLVE NI 1430x3 S1410I88ns ‘AveyY 11uo CELE L] ”
b e e = 03136V 30 VN $5IC710 HOWNOD VW8 —63—

& ; : *$37N00W VIV NI BHYS 3HL 38 LSNN WIDAZ® %2078 NOWMO) "
. S08%23M2 §1 378VINVA.03.09 .41.03007TY SiHaS €1 09 Q3inew0d ___g3—

‘BNVN 370vIuYA V30311 A8 04 eu..-.uc 30 18rn $321480 073 -u

ek s e s trmrintenem i il I BN
g:: A4y _NO_YSIN xw— 1S 0/1. 4304y . Q3224 “”"an»oulo -nll
PR —— R Ly >
T VeI~ SOVaWIS 0 I a1 AT a.. .m:. T c003"08

e o S M e —ee UASA 0N ALr

u3sn Jon 11
——-JU3030N0] 30 48NN.SININOAXI Sy Q35O _SUIUWNN FV0MR 3.

. .ao_.._.:-uc-o_ ..zou_u..x_-quae..au-:.o
: iy o oy LM INSNI1YLE INSNN D138y w..nllm

SSIMA8 11D NI SAN3WNDNY IAVN 10N AV S3INIIN0N 3Wid Iv3g 13
—LSNOISSBYGXBLAVEI000 - ¥0 " NAJNY RIVINOD LON 4SNW S1MIS TIVD NI SININNONY .. S§_

4NN 378vINVA v HOJ NOILVII 10348 3dAL 3ND 0%
s *3003 378viNJaX3 30323Ve O SIWIS vivd__ o

TAVNUY NV DNION3W343¥ N3NR S141¥ISOPS ¥3DIINI 3Sp v

G s et it csmecne DIV AN . sl
*gN1iN0Y B3¢ !xu..m:: 27eviN23X3 .7 40 WNWIXVM [

=l a3sN 4oN s
Peyvg-3 JUIIN3N03IS 38 04 S1kiE NOILVANIAINOD "

¥O ONION3ISY N1 30 02 3kY.§738vY swis Q.
TO14128NF AN1N‘6=8 SNNNT0D NI B8 04 DRV SNV Juig
Q3SN_A0%

STURY styvanvad

Wi TV D DOV

=14~

3.2.3

assigned card sequence numbers, and numeric codes indicating
which standards were violated. A maximum of five numeric
codes are printed per source statement. Figure 3-2 shows

a sample of this output.
Module Summary Output (Coding Standards Audit)

Following the audit of each module, Code Auditor prints

messages showing the count of executable statements in the
module in addition to the number of FORTRAN IF statements.
Following is a list of FORTRAN statements included in the

count of executable statements:

DO PUNCH

GO TO PRINT

IF DECODE

PAUSE ENCODE

STOP READ

REWIND WRITE
BACKSPACE ASSIGN

ENDFILE Assignment statements
CALL Function calls
EXIT

RETURN

Code Auditor also outputs a table summarizing the results
of the audit of the module. It is shown in figure 3-3.

The numeric codes and descriptions on the left of the tables
jdentify the standards not adhered to in the module. The
"total errors" column contains counts of violations for each

of the standards identified. The "card numbers" column

w15

Z-€ 2an31g
YIDUN TONANDAS
£ . (VD (EINDISSV . ARC 2 o RO 3 i SRS P o L
QiLVIOIA SRIVONVIS dOLIGIV 3d00 3000 I :
g e e < —— e e o s e e e e e e e e = - - - - --
u 5 e SRR -wuu-‘on --|:1-Moo~omm e e el e i SR b CL U AR G - T an3 ‘m
(413 62 0S56297g fuY N¥NL3Y® ;02
2 e i NN R g 4 e e e gt = Lokt ¥ i Y o N g'2=y w0}
L2 0s6281H 002 01 09¢z2'03 1) 4
s I _92 02628TH ‘00T 04 _0f¢°S'09°4)41
t e
wm mywﬂu“h 3009 03¥NLINYLISNQ 9
€L veycylH 2
22 08u28YE N b 4 e £°cald .
12 082818 24l
02 0968¢818 yex
92 61 0sgevug AT
L GO o 8T E Oygevied . - 3 e T Ta(¥ya8vl .
LY ofBeyL @ ‘2uy
£ B c 9% 0Z8erLE i G 0 %S i = Tt
ST 0182y @ d4142560s 0341HO0 ONY Ld1u2S8NS ¥3DILNI AON HLIN Aviuy 2
e i » OORSyRBl e ams R ae e NL Sl e e e e e T)
6 £1 06.25. 4 /871 vivg
2t 06.¢6.4 Te]
v 144 0cLet18 INIOEM/NIDNNZ NOWKOD
»2 (1} 09s2v1 8 (STHAEYIZA¥YI/ NOWWOD
T 6 0g,2¢18)
e oW, o= olmtu uuuuuouuuuuuuoouuuuuuouuouuuuuouuououuuuuuuu...uuuuuuuuuu.uuuuuuuuuounmmnuwl.
L 0gc2¢18 D
9 0242418 D . : %0078 ANYIN3WD)D mu<uwxg w93t **3508 . . D
[0vc2L18 w ONIS$300ud NDIAVAOIA SUNYANYAS S3NNIANOD 3A1.N0HBNS SIHY w
» 00L2418
$ 0692,74 92332209999239935299393990329339599990393993922399393939229922329392823320
ST o . 089214 i SO T e 9
m 0296018 (NDYV1)Avedvy 3NI1AOwEeNs
‘BN V2 St - ... 3003 . 30UNOS . S SR

-16-

. €- € wu:wﬁm ‘
OL QR:UUV JON SVM (RIVINVLS i I R R,] 1 soliem i, e i
T ONIUNQUISTRMOD L DN SEWUN (RIVD SNOILVIVIA 40 : “OL GRT
@INDISSY ¥QLIAMV 3000 40 IS11 . YJOWN TVIOL NOLLA DS E..:Szﬁ.m EIVIOIA JON ws._«dzs_h
e r =
| : - v 117 ANZWNDBY NY NIYINOD NYD LW1S NNALZH ON ' & sg ' . __
) 1 QUYONYLS WAIA IR3ISISNOD 4ON %0018 INIWHOD 3DV 33¥d 1€
s ok) O T —._SINLS INdINC?ydyC*IIvD 1d39x3 x3aN1 LIWO :3A3N 92
143 b} 2 S3INBOKW Ay NI 3HYE HIONIT X008 NCHKOD »2
ST 5 - 3 £ B 3009 wchpnumxu 303934d Q4 SLHLIS Vviva B iy e e
1] 1 Ayuuy Ny oNjoN3udggn Nanw sidivdsens #303iNt =sp (]
esewesesscctecmccccseccsneccngae |l0|.||¢tltl000ﬂtloulo'||oo-unn..ﬂ-.t.l'lnwunﬂutnnm .ouo:vl..||nlroﬁun,'lul...ll.wvlnn»yt!lctlu.lllottl Ly ol
SH3ANAN AxVA-V3 HTTCTE R H za_ﬁg_zumwn CELCT UL T E)
-EAAN . ¢ & & < s s R R S ; e
: 3 INTINOY STHL HOJ BINIRIIVLS 41 S0 BIBAON o
S e . s 5 & SRR S s : i . = °
: FING0H NI SINWLVIS FIVLODE 40 INGO .ﬁ I3 ONILNOY SIHL ¥OJ INNOD IN3n31VLS 378viNd3x3 o
*
i - '00|lll0|lllllI||000lt|-OIClIIIIOllIOlhll01.
Sy S AYHMY 3NIANOM ¥Q4 AWveWOS O3 10NY 2Q09 ¢

-17-

!
|
|
!

3.2.4

lists the Code Auditor assigned card numbers where the
corresponding standard has not been adhered to. A maxi-

mum of five (5) card numbers are listed for each violated

standard.
Program Summary Output (Coding Standards Audit)

Following audit of all modules and following printout of
the summary data for the last module audited, Code Auditor
prints three tables containing summary data for module
audited. Examples of the three tables appear in fiaures

3-4 through 3-6 following.

Subroutine "SUB1" has 3 instances
of non-adherence to standard no. 3

ROUTINE RESTRICTION
1 2 3 4°656.6:37.868 8 10 11, .

- - - - e - e - - e .-

CAREE 2 3 F L 0. a3-220 A37F 20 L . &
SUBI 0 2 310001 O 350°.0 |

--

Figure 3-4, Program Summary Output
(Error Summary)

o e Lol b adas Lot s b bbb L T L

The Code Auditor Error Summary Report (figure 3- 4) has one

entry for each routine audited for each of the 37 standards.

ROUTINE TOTAL ERRORS TOTAL CARDS PERFORMANCE INDEX

CAREG 60 153 60.78
SUB1 17 53 67.92
TOTALS AR 206 62.62

Figure 3-5, Program Summary Output
(Error Totals)

The Error Totals table (figure 3-5) has one line of data for

each routine audited plus the line of data for the totals.

The performance index is

(1 ¥ :g::]'l 52:5?)* 100, a arade from zero to 100.

When the performance index is calculated to be less than zero

Code Auditor outputs a value of zero.

-19-

T —— .] —

I STANDARDS VIOLATION TOTALS

RESTRICTION T2 3 @b 28 B0 ..

TOTAL i g R - TN B B 0 < N) B

There are 6 instances of non-adherence to
coding standard number 3 in the routine
audited.

Figure 3-6, Program Summary Output
(Standards Violation Totals)

The Standards Violations Totals table has one entry per

standard 1 through 37.

3.2.5 Module Segmentation Output (Program Structural Analysis)

Following the auditing of the user's program for adherence

to the RADC coding standards, the program's logical struc-

ture is examined. Appendix B describes Code Auditor's ap-
proach in checking the user's source code for conformance to
program structural requirements. The segmentation data printed
consists of a listing of the source code being audited, anno-
tated in the left margin with Code Auditor assigned segment

jdentification codes. The numeric codes assigned are se-

quentially ordered from the initial source statement of a

-20-

3:2.6

program module to the last statement. The numeric segment
identifiers are not reinitialized if more than one module
is processed; the initial segment number assianed for an
intermediate module is one greater than the last assigned
segment number for its predecessor module. Fiqure 3-7

following depicts a sample of this printout.
Segment Transfer Table Output (Program Structural Analysis)

The Segment Transfer Table, depicting the loaical transfer
of control among the program module's segments (3.2.5) is
printed during this phase of output. Each Segment Transfer
Table, comprised of ordered pairs of "from-to" seagment iden-
tification codes, corresponds on a one-to-one basis with

each program module processed. Tracing throuah the Segment
Transfer Table should provide a string of segment identifi-
cation codes for each logical path through the corresponding
program module. In the Segment Transfer Table of fiaure 3-8,
the two logical paths through the sample Seament Transfer
Group are 31-32-34-35 and 31-33-35 respectively. This figure

corresponds to the executable instructions and assigned seg-

e i ASRRG A s s

ment identification codes for the sample segment identifica-
tion group depicted in figure 3-7. An example interpretation
of the Segment Transfer Table follows. If the decision por-
tion (ISEG1.EQ.1) of the preceding IF expression is 'TRUE',

=

E
i (=€ 2an813 0 P
S3000
SR e b e IR S e e S e S T e A e e T
3000 IUNOS LANT INFOIS
——— ————— — ————————— v — — .. - —me - " - o Py = G S - — s - - - . !. -V -
T SR i B e |

L o 2 3 M OpSR00V Il e s L s e T NN R e e T e
0£629TV NunL3y .

ATV I 042281V . : _ 3aNiL1ngd _:Brllo-l.l £S _
0ge28ty 9399381 02 . s
0ce23ty VPET 01 m o eI
0982931V 9s£93 _ 0.1t . [

LN 068281y . AN, S T i« AP L) 5 < | m ELRIENCIC I e
oyg28ty 92293 _ 0.0% ° 41

TSI S R S B O o et O B T e» i ST R e

s 02828%Y 9s1 wm— 0.6 L {4
018281tV 3..;:22 13:0.0T¢.06) o* D B
008283y *slp3s ..:.S.m ‘ONV T 1Y «cmw)4 o6y ¢t
g s AR 09ZCHTY s, o | R R e E it ST el A 2 3nN ;oo...,ol a8
06L28TY cs99351 0.2 »)

Aol S L e S o ovZeeyy .- o Lo PR L O 11 T Y e o i e P
0cc28TY 63£93gl . ()
0zce8ty 009 o) p9(S° 3N"203g1)3] _ L 120 |
0g92ely §3¢93¢g1 . [13

BT oty BT W R 4 . “d ©.__._._0b0Z 01 O%(E°03:19381)d] e gy 3 &
0g929TY cs193g1 6(9 ° 2)

Bl g S ORI W W T e e 606 01 ou:.mz..smm_:_ _e Ty T
065288y v23193g1 0. [} a»

0 . 0Tg28%Y i _3NNILINOD D b [} [14
006268V 00 o4 0% o
08p281TY Sk bk L il R I ol i (AR S e g nuuoww_ el 0) SRS | SR |

D (2 71-21 2 T s e N e A .$_z .s ! e, Nalicler! o, ;
s 0gr2ety ~.~uw 0.1 e e |

) ” 02Zy2eTY ; . re2 .dz % . - "
0T929TY 2s193S1 *

000 K11 R i L1 003 04 08¢1°03°393s1) 31 'ETIN

INDO3S T1AWS 095231V - 12293sl . [}
¥] LN O N - S P I > g Rty Y s e el o A TL19381 o iy
' 0TxCy0Y : ” Ts(lyalvl @ '
) 00s2y0y il -) -~ [oy
.....l°m~wmc« - & owm o =@ ® ® ® ©® ® O ® O ° @O % 0o em e O - & e oo e o ¢” ﬁ*h‘q. -.-'” "w”...
bR i Meada i el ol R el s / Y i

“cmﬁ? ’ INIDUM/NI9YN, NOWNWOD .

& e : 0gz2y0y e e i S S :_:w.:_:z.:m,zo::oo)

083200V (NDYYI2AYyuY anlinouens L]

NOTda1u9530 IN3HD3S WYHOOUd

P iy A s co.za:c,-oeu-on‘- i

RADC_CODE AyDITOR
AR o ~_PROGRAM STRUCTURE ANALYSIS
_ ROUTINE ARRAY G atvits. Seog
16/30/76
SESMENY TRANSFER TABLL FAROM AUDJY — — i
L e - SO Tl T s i A S o D SN k

:""rsx B ' ’
voiwg s GO 33 e F T e Wi, Sty iy
v 33 35)—— SNLE SEQENT TRANSFER GROUP
iR R A B T e ey
i e a0
36 T8t
36 38
R L e 0vI 08 it
s 36 7 £
LR e S T TR R R S Ry
ar a1
D,
a4 40 |
€2 " 4% el R P O
42 aa
-
i 48
448
5 42
3 46 48
47 48
48 T 49
@ 50
49 50
on 51 ;
80— 53 :
B !
57— 54
51 55
932 53
3 55
54— 55

90q08adrnenecrtneaqerenngossadadioges

o L]
o THE RROGRAM 1S STRUCTURED .
Seesisseessassuseesssisasasastatees
Figure 3-8 +
-23-

3.2.7

control is transferred to segment number 32 (GO TO 100) as
indicated by the 'from-to' pair '31-32', otherwise control
passes to segment number 33 as indicated by the 'from-to'

pair '31-33'.
Module Summary Output (Program Structural Analysis)

Each Segment Transfer Table is iteratively reduced as
described in Appendix B, in making a determination of the
corresponding module's conformance to program structural
requirements. Figure 3-9 depicts a Segment Transfer Table
after iterative reduction for a typical unstructured program.
Also printed during this phase is a message declaring the
corresponding module as 'structured' as shown in figure 3-8,

or 'unstructured' as depicted in figure 3-9.

The final phase of Code Auditor's printed output summarizes
the result of program structural analysis, as shown in

figure 3-10.

-24-

W

RADC _CODE _AUDTTOR
PROGRAM STRUCTURE ANALYSIS
ROUTINE MAIN

¥6/30/76 :

SESMENT TRANSFER TABLE FROM AUDIY

FROM _ To

I
S

‘
.5

2N+

o ____THE PROGRAM_IS_NOT_STRUCTURED __
SBGMENT TIANSFER TogLE AT cOMPLETION oF RGpucTlaN

FROM To
A R
LR

~WaDC C
—_PROGRAM_STIUSTURE SUMMARY

r4/3/76
WOUYTNE RESULYS
eceveceny esesecses
MATN UNSTRUCTURED - 1
: __ARRyY $TRUCTURED

|

2 ROUTINES dERE AUDITED
1 ROyTINES W4ERE Stﬂv
1 ROJTINES 4ERE UNSYAU! tulib

Figure 3-10

-26-

3.2.8

Error Messages

In addition to its normal printed output, the Code Auditor
prints a number of error messages. Many of the error messages
printed are simply a result of sanity checks performed by the
Code Auditor that suggests the user's source input is not
compilable. Others are due to excessive module size causing
Code Auditor's internal tables to overflow while the remaining
messages are usually a result of logical errors not detectable
at compile time. In any event, user response recommendations are
provided for each error. Should the recommended corrective
actions not clear the problem, the Code Auditor maintenance
programmer should be consulted. A brief explanation of each
error message plus recommended user response follow. Some error
messages are grouped as a unit due to similarity in content and
corrective action.

(1) Error Message - MORE THAN 100 TASKS

Description - The Code Auditor can process a
maximum of 100 modules (main
programs, subroutines, function
subprograms, etc.) per execution.

Excessive modules cause an abort.

Corrective Action - Break the source input into groups
of 100 or less modules and process

each group in separate executions.

<27-

okl RN e i el

(2) Error Messages (a)
(b)

(c)
(d)
(e)

Description

Corrective Action

(3) Error Messages (a)

(b)

-28-

- XXX OVERFLOW - ABORT RUN
CODE AUDITOR VARIABLE TABLE
LENGTH EXCEEDED....SEE PRO-
GRAMMER
VSTR RATIO LESS THAN ONE
ERROR - TOO MANY SEGBF ENTRIES
TABLE OVERFLOW - THIS RUN
CONTAINS XX TRANSFERS

- A1l of the above messages
indicate the overflow of
various tables internal to the
Code Auditor and may all be
attributed to excessive module
size.

- Remove the offending module and
consider its redesign and parceling.
In all likelihood the module violates
coding standard No. 6; maximum of
100 executable statements per

module.

- CLEANUP - FATAL ERROR - SEGMENT xx
FROM SEGBT IS GREATER THAN ALL
SEGTAB ENTRIES

- CLEANUP - FATAL ERROR - LABEL xx
NOT FOUND IN SEGTAB TABLE

(4)

Description

(c)

(d)

Corrective Action

Error Messages (a)

Description

(b)

Corrective Action

i e i, i

-29-«

INITSG ERROR - NAME xxx

NOT IN KTABLE

ERROR UNSOLVABLE PROBLEM

IN TRAPIT

These errors are most likely
logical errors not detected

at compile time.

Check Togical program structure

after recompiling.

ERROR DETECTED BY IFCK

IFCK ERROR 1

MATCHING PARENTHESES WERE NOT
FOUND

ERROR DETECTED BY SQZB

SQZB ERROR 2

0 PRECEDES THE HOLLERITH STRING

These errors detected as a result
of sanity checks conducted by the
Code Auditor, and usually indicate
the source input is not compilable.

Recompile prior to processing thru

Code Auditor again.

3.3

Operating Procedures

The Code Auditor was designed to execute in a Honeywell 600/6000

batch environment under GCOS control. Three control card decks

are described for executing the Code Auditor under GCOS. Each

deck corresponds to one of the three alternative input mediums

on which the user's source code may reside. The following common

rules apply to all control cards:

(1)

(2)

(3)

(4)
(5)

(6)

A11 control cards except the ***EQF card are

identified by a $ in card column 1.

The control card name (i.e., IDENT, LIMITS, TAPE, etc.)

begin in card column 8.

The variable field begins in card column 16 and must

not exceed column 72.
Variables must be separated by a comma.

A blank terminates the field definition and the card

scan. Therefore, no embedded blanks are permitted.

Upper case alphabetic entries are required; lower case

are user/installation supplied data.

«30-

3.3.1

Source Input via Cards

The control card sequence below shows the deck structure necessary

to execute with source input from cards.

Control Card Description
$ IDENT account no., Identifies the user of a job
identification and supplies the user's account
no. The variable field format
and content is installation 4
dependent.
$ USERID system master Identifies the Code Auditor
catalog name system's master catalog name.

The variable field's format and

content is installation dependent.

$ EXECUTE DUMP Requests the loading and sub-
sequent execution of the Code
Auditor proaram. Should the
execution activity terminate

abnormally, the DUMP parameter in

the variable field request a slave

core dump.

-31-

A e it it i

Control Card Description
$ LIMITS 05, 40K, Modifies the default resource
9K, 5K limits. Interpretation of the

variable field parameters follow:

05 the maximum processor run

time is 5 minutes.

40K the maximum core storage
for running the Code Auditor

is 40K words.

9K the amount of core storage
that can be shared with the
General Loader when the

Code Auditor is loaded is

9K words.

5K the maximum number of
lines to be written on
SYSOUT during program

execution is 5K lines.

$ PRMFL H*, pemmit, Accesses a permanent file where
mode, file string the relocatable object code for
the Code Auditor resided. Variable
field entries are installation

supplied.

-32-

Control Card

$ FILE 11, A3RR,

$ DATA 05

CAOPTION parameters

$ DATA 13

User's Source Code

$ SYSOUT 06

$ ENDJOB

1L

-33-

Description

Sets up allocation of a mass
storage file. The logical unit

designator is 11.

Indicates that program input data
immediately follows this card.
The Code Auditor will reference
this file with a logical unit

designator of 5.

This is the option card input to
the Code Auditor. See 3.1.2 for

format and content.

Indicates that program input data
immediately follows this card.
The Code Auditor will reference
this file with a logical unit

designator of 13.

The user's source should follow

immediately the card, $ DATA 13.

Assigns the Code Auditor's printed
output (logical unit number 6) to

SYSOUT for on-line conversion.

Indicates end of job and must be

the last '$' control card of the job.

B s e i L e

3.3.2 Source Input From Disk

Control Card

IDENT account no., identification
USERID system master catalog name
EXECUTE DUMP

LIMITS 05, 40K, 9K, 5K

PRMFL H*, permit, mode, file string
FILE 11, A3RR, 1L

O & U U5 U 5 O

DATA 05
CAOPTION parameters

$ FILE 13, device name, access

$ SYSOUT 06
ENDJOB

-34-

The control card sequence below shows the deck structure

necessary to execute with source input from disk.

Description

See 3.3.1

See 3.1.2

Identifies the disk file
containing the user's
source code. Except for
the file code of 13, all
other parameters are user
supplied. See 1.2 (1).
See 3.3.1

3.3.3 Source Input From Tape

Control Card

IDENT account no., identification

.

USERID system master catalog name
EXECUTE DUMP

LIMITS 05, 40K, 9K, 5K

PRMFL H*, permit, mode, filing string
FILE 11, A3RR, 1L

T
¥ A L A P O

DATA 05

CAOPTION parameters

$ TAPE 13, device name, multireel

indicator

$ SYSOUT 06
$ ENDJOB

-35-

The control card sequence below shows the deck structure

necessary to execute with source input from tape.

Description

See 3.3.1

See 3.1.2
See 3.3.1

Assigns a tape unit to
the users input source
code. Except for the
file code of 13, all
other parameters are user

supplied. See 1.2 (1).

See 3.3.1

— ol J
—OWVENONBWN —

—)) d ot el od
ONOUDTHWN

APPENDIX A

RADC FORTRAN CODE AUDITOR CODING STANDARDS

A brief description of the standards incorporated in the current version

of the RADC FORTRAN Code Auditor Program follows:

Not used

Stmt labels are to be in columns 2-5, right justified
Stmt labels are to be in ascending order

Continuation stmts to be sequenced: 1-9, A-J

Not used

Maximum of 100 executable statements per routine

Not used

Use integer subscripts when referencing an array

DATA stmts to precede executable code

One type specification for a variable name

Arguments in CALL stmts must not contain arith, or logical
expressions

Real time routines may not have arguments in CALL stmts
One assignment statement per line

No mixed mode arithmetic on righ® . 'de of equal sign
Whole numbers used as exponents wi:c be integer

Not used

Not used

DO loop nests must not exceed six levels

FORMATS are placed after I/0 statements, or after RETURN
Not utilized

Not utilized

1/0 devices must be referred to by integer variable name
Computed GOTQ stmts allowed if GOTO variable is checked
COMMON block length must be same in all modules

A11 COMMON blocks will be labeled

Never omit array subscripts except in DATA, CALL or output statements
STOP and PAUSE stmts not allowed in real-time programs
Assigned GOTO stmts are not allowed in real-time programs
Not used

Not used

Preface commentary block to contain:

Cor * in column 1 on all cards

First card: * ijn cols 2 or 3 thru 71 or 72
Intermediate cards: Same symbol in col 1 as first card followed
by text
Last card: * ijn same columns as first card
-36-

e

32A Comments must precede blocks of one or more IF stmts
32R Comments must precede blocks of one or more CALL stmts
32C Comments must precede blocks of one or more 1/0 stmts
32D Comments must precede mixed mode assignment stmts
33 In-1ine comments consist of three or more cards:
C or * in column 1 on all cards
First card: Blanks in cols 2-72
Intermediate cards: Text
1 Last card: Blanks in cols 2-72
34 No RETURN stmt can contain an argument list
35 Not used
36 Not used
37 Not used

The following are the reasons for the standards enforced by the Code
Auditor. Numbers correspond to the list of standards. :
2) This restriction is enforced to ensure better readability in source

code and forces a consistency in all programs.

3) Placing statement labels in ascending order will force the code
to be more readable by using labels to sequentially illustrate
the routine/subroutine. Developers are also encouraged to use :
statement labels for illustrating specific "blocks" or "loops" in
code, (e.g., use order of magnitude of statement label numbers

to illustrate "loops" or "blocks").

4) This restriction is enforced to ensure better readability in source

code and forces a consistency in all programs.

6) This restriction enforces the philosophy of modular programming.
8) This restriction prevents mixed mode processing of array subscripts,
This also prevents octal or fixed point indexing which is prone to

error.

—_

9)

10)

13)

14)

15)

18)

19)

22)

23)

DATA specification statements are placed here to secure a uniform
location in routine/subroutine code where data specifications may
be found. Placing DATA specification statements here also ensures

that they will not be placed after executable code.

This restriction facilitates readability. This practice also

prevents redefinition of specifications from conflicting.
This restriction enhances readability and eliminates confusion.

Mixed mode is inefficient because it forces a penalty in execution

time to make mixed mode conversions.

Integer exponentiation is used throughout to preserve accuracy

in potential conversion roundoff errors.

This results in inefficient code because the compiler will not

optimize code nested this deep.

FORMAT statements are placed at this position to define a uniform
location in all code where FORMATS referenced from I/0 statements

may be found.

This restriction is enforced to prevent mode processing of
I/0 statements. Reference by variable name allows easy change in

program.

This restriction forces 'computed GO TO' usages to be completely

bounded logically and aid in ease of reading.

-38-

24)
25)

26)

27)

28)

31)

32)

33)

34)

This restriction ensures proper correspondence in COMMON block.
A1l COMMON blocks in code are labeled to avoid the risk and

confusion of misinterpretation of data base locations.

This is enforced to keep flexibility in the processing of array

subscript operations.
STOP/PAUSE statements are not allowed in real-time programming.

The philosophy behind structured programming is that it encourages
more efficient code due to less branching and jumping to different
places in code. This restriction is intended to enforce this

philosophy.

This standard is enforced to ensure a consistency in preface

commentation of all programs.

Comments must precede "IF" tests, branch to statements, input/output
statements and statements containing statement labels to flag
and define significant portions of the source code. This practice

will also force better documentation.

This restriction is enforced to keep commentation in the body

of routine/subroutine code consistent in all programs.

RETURN statements do not contain argument lists. Orderly subprogram

exits are enforced.

=39-

e it St S o o

B.1

APPENDIX B
STRUCTURED PRCGRAM REQUIREMENTS

This appendix defines what is meant by the term "structured

program" and describes the analytical methods employed by

the Code Auditor in examing a user's source code for adherence

to "structured program" requirements.
Program Segmentation

The initial step taken in determining whether a program
module adheres to “"structured program" requirements involves
the syntactical analysis of each of the module's source

statements.

This examination results in an identification of the logical

structure of the module and its constitucnt parts (segments).

A segment, for our purposes, is defined as a sequence of
statements with one 'entry' statement and one 'exit' state-
ment (which may or may not be the same statement), such that
if the 'entry' statement in the sequence is executed, all
statements in the set are executed; the 'exit' statement
being executed prior to the transfer of execution control to
another segment. Thus, in the sequence of source statements
which follow, the group of statements between the expression

A=B, and the 'predicate' portion of the IF expression,

inclusive, would comprise a single segment (assigned a segment

-40-

identificaticn code of 1).

5 A=B
B=B+1.2
IF (A .EQ. C) 60 TO 20
C+'C ~1.5
B = A+B+C
20 A = A+1.0

Seament transfer may then be defined as the passing of
execution control, either implicitly or explicitly, from

one segment to another. In the preceding example, the state-
ment IF (A.EQ.C), implicitly passes execution control to the
statement GO TO 2N (assigned a segment identification code of
2), if the 'IF' condition is 'TRUE', otherwise implicit transfer
is made to the statement C=C-1.5 (segment identification code
is 3). The 'GO TO' statement explicitly passes execution con-
trol to the statement labelled '20' (assigned a segment
identification code of 4). It should be noted that the state-
ment GO TO 20, is a one statement segment, i.e., comprises both

the 'entry' and 'exit' statements of segment no. 2.

In order to automatically identify a program module's segments,
a segment's entry statement must be defined in a completely
unambiguous manner. A source statement is defined as a segment

'entry' statement if:

-4]-

(1) it is the first executable statement of a program

module.

(2) it is the first executable statement following a

FORTRAN ENTRY statement.

(3) it is the first executable staterent following a

subroutine CALL statement.

(4) it is the first executable statement following a

logical or arithmetic IF statement.]

(5) it contains a FORTRAN label (FORMAT statements

excepted) whether referenced or not.

(6) it is a DO statement.

(7) it is the first executable statement following

a DO terminator.

i (8) it is the 'consequent' statement of a logical

IF statement.

Similarly a source statement is defined as a segment 'exit'

statement if:
| (1) it is an unconditional GO TO statement.

k (2) it is a computed GO TO statement.
f (3) it is an assigned GO TO statement.

(4) it is an arithmetic IF statement.

B.2

(5) it is the 'predicate' portion of a logical IF

statement.
(6) it is a CALL to an external routine.
(7) it is a RETURN statement.
(8) it is a STOP statement.
(9) it is the terminal statement of a DO loop.

(10) it is any other executatle which precedes an

segment 'entry' statement.
Seament Transfer Table

Upon completion of program module syntactical analysis and
identification of the module's logical segments, the Code
Auditor builds a table which describes the interrelationship
of these segments. There is one table per program module
processed. Describing the interrelationship amohg a program
module's segments simply means the 'from-to' pairing of segment
identification codes involved in the transfers of execution
control, thus the table name 'Segment Transfer Table'. The
Segment Transfer Table shown below depicts the segment inter-

relationships of the example program statements of Section B.1.

FROM TO

W N =t s
SPpwWN

The reader may verify the authenticity of the over-simplified

example.

-43-

B.3

Structural Analysis

To begin our definition of a "structured program" consider the
coding structures shown in Figure B-1. A "structured program"
may contain a combination of only those code structures
depicted in Fiqure B-1, such that control flows from top to
bottom or from beginning to end. Back-tracking is not allowed.
To check if a program module complies with "structured program"
requirements, the Code Auditor iteratively applies a reduction
algorithm to the module's corresponding Segment Transfer Table
until the residual table is irreducible. If the residual table
contains more than one entry, then the module is unstructured.

The algorithm steps are as follows:

(1) Delete all trivial entries; entries of the form

(i,1)

(2) Delete all redundant entries; entries of the form

(i,j) except the first

(3) If i transfers to j and either
(a) j only transfers to k for some k
or
(b) 1 only transfers to j
Then: replace j with i

-44-

1-9 W4

SRINLINYLS INIO0D SISATYNY TVHNLINYLS

(1

€ ANIWO3S T ANIND3IS

§ ANIWO3S

TAN3IWD3IS
J T4ANN 00

34vI83 1 ANINO3S | %ml
! ;

Z ANIWO3S 1 IN3WO3S 4

¥ INIWO3S € 1NIWO3S 4
“ 1 ¥ AN3NO3S

-45-

TANINODIS | AN3IWO3S

R P . ; MNINIML A
a 39N3N03S

%%L\«H A) B B £ ARG N AT RO . " Sisw
- - v i~ " DAY - e — ———— B SE————— L

UL GOVERNMENT PRINTING OFFICE: 1077-714-088/0

METRIC SYSTEM
BASE UNITS:
Quantity Unit S1 Symbol Formula
length metre m
mass kilogram kg
time second s
electric current ampere A
thermodynamic temperature kelvin K
amount of substance mole mol
luminous intensity candela cd
SUPPLEMENTARY UNITS:
plane angle radian rad
solid angle steradian sr
DERIVED UNITS:
Acceleration metre per second squared ms
activity (of a radioactive source) disintegration per second (disintegration)/s
angular acceleration radian per second squared rad/s
angular velocity radian per second rad’s
area square metre m
density kilogram per cubic metre . kg/m
electric capacitan:ce farad F A-sV
electrical conductance siemens S AN
electric field strength volt per metre i Vim
electric inductance henry H V.s/A
E electric potential difference volt Y W/A
; electric resistance ohm ViA
i electromotive force volt \Y WIA
‘ energy joule J N-m
entropy joule per kelvin JK
force newton N kg-m/s
frequency hertz Hz (cycle)'s
illuminance lux Ix Im/m
luminance candela per square metre i cd/m
luminous flux lumen Im cd-sr
- magnetic field strength ampere per metre o Alm
i magnetic flux weber Wb Vs
) magnetic flux density tesla T Wb/m
magnetomotive force ampere A
power watt w Jis
pressure pascal Pa Nim
quantity of electricity coulomb C As
quantity of heat joule] N'm
radiant intensity watt per steradian Wisr
specific heat joule per kilogram-kelvin Jkg-K
stress pascal Pa Nim
thermal conductivity watt per metre-kelvin Wim-K
velocity metre per second mis
viscosity, dynamic pascal-second Pe-s
viscosity, kinematic square metre per second mis
voltage volt v WIA
volume cubic metre m
wavenumber reciprocal metre (wave)m
work joule] N-m
SI PREFIXES:
_ Multiplication Factors Prefix S Symbuol
| 1 000 000 000 000 = 10'? tera T
1 000 000 000 = 10* Rige G
1 000 000 = 10* mega M
1000 = 10° kilo k
100 = 10? hecto* h
10 = 10' deks* de
0.1 = 10~ deci* d
0.01 = 10-? centl® «
0.001 = 10~? milli m
0.000 001 = 10~¢ micro m
0.000 000 001 = 10-* neno n
0.000 000 000 001 = 10-*? ico
0.000 000 000 000 001 = 10-'% emto r
0.000 000 000 000 KO0 001 = 10-'* slto a
* To be avoided where possible.

